TAU PATHOLOGY REDUCTION WITH SM07883, A NOVEL, POTENT, AND SELECTIVE ORAL DYRK1A INHIBITOR - A POTENTIAL THERAPEUTIC FOR ALZHEIMER’S DISEASE

Benoît Melchior, Carolyn Lai, Karen Duong-Polk, Amanda Tjitro, Deniz C. Ince, Joshua Stewart, Luis Dellamary, Brian Hofilena, Gopi Mittapalli, Sunil KC and Yusuf Yazici
PHOTO, VIDEO AND AUDIO POLICY

Photography is welcome in this presentation.

Video and audio recording are prohibited.
Disclosures and Disclaimer

• CME/CE credits will not be awarded for this presentation

• All authors are employees and shareholders of Samumed LLC

• This presentation is not intended to provide a comprehensive overview of all studies using SM07883

• SM07883 is an investigational compound; SM07883 has not been approved by the US Food and Drug Administration (FDA) or any other pharmaceutical regulatory authority, and no conclusions can or should be drawn regarding the safety or effectiveness of the product candidate

• While the complete mechanism of action (MOA) for SM07883 is unknown, further investigation is being conducted. All of the MOA information is based on non-clinical data and the relationship to clinical benefit is unknown

• This presentation is intended as a scientific exchange of medical information, is provided for educational purposes only, and is not intended for any promotional purpose or to offer medical advice
Tau hyperphosphorylation and pathology

- Tau hyperphosphorylation causes oligomerization and aggregation leading to neurofibrillary tangles (NFTs)\(^1\)
- Tau oligomers are believed to spread across the synapse to unaffected neurons\(^2\)
- Inhibition of DYRK1A activity may reduce tau hyperphosphorylation and related inflammation thus reducing the pathogenesis of Alzheimer’s Disease (AD) or other chronic tauopathies

NFT illustration adapted from Alzheimer’s Disease Research, a program of the BrightFocus Foundation.
Mechanism of action of SM07883, a potent DYRK1A kinase inhibitor with a novel target profile

- DYRK1A is a novel target found overexpressed in AD, Pick’s disease and Down syndrome brains\(^1\),\(^2\)
 - Regulates phosphorylation of tau\(^1\),\(^2\), APP (A\(\beta\))\(^3\), and presenilin\(^4\)
 - Primes tau for further phosphorylation (hyperphosphorylation) and regulates GSK-3\(\beta\) (also involved in phosphorylation of tau)\(^5\)

- SM07883 inhibited DYRK1A-mediated tau phosphorylation thereby preventing tau oligomerization, aggregation, and NFT formation

SM07883 Drug Discovery
SM07883, a potent DYRK1A kinase inhibitor with a novel selectivity profile

In kinase inhibition screen assays of 414 kinases, SM07883 showed relatively specific and potent inhibition of DYRK1A – 5 additional kinases within the 15-fold range of DYRK1A IC$_{50}$
SM07883 inhibited tau phosphorylation in vitro

DYRK1A-induced tau hyperphosphorylation in Tau/DYRK1A HEK293T cells

Tau phosphorylation in a human neuroblastoma cell line (SH-SY5Y)

SM07883 potently inhibited tau hyperphosphorylation in two human cell lines
SM07883 was bioavailable and brain penetrant at therapeutic levels in mice

- **Good bioavailability** across species 35% – 100%
- **High permeability** and **limited efflux** (Caco-2 Efflux ratio: 0.283)
- **Brain / Plasma ratio**: >3 in mice ($F_{ub}/F_{up}=0.64$); ~30% plasma free fraction across species; ~6% brain free fraction (rodent)
- **High correlation of PK between brain, CSF and plasma**; half life was consistent between plasma and brain
- **Plasma levels may be a surrogate for CNS exposure**
- Allometric projection >11 hrs half life in human plasma and potentially amenable to once a day dosing in human
Animal toxicology and safety findings

- No Observed Adverse Effect Level’ was 30x higher in AUC than the minimum efficacious dose (1.25 mg/kg/day) in mice
 - 8x total exposure in monkeys (GI intolerance was the dose-limiting factor, reversible)
- No cardiac abnormalities (e.g. QT prolongation, arrhythmia) were detected up to 50 mg/kg in monkey
 - hERG channel inhibition IC$_{50}$ of 0.6 µM
- *In vitro* and *in vivo* studies demonstrated that SM07883 had low potential for genotoxicity in human
- Suggested a broad therapeutic window for human dosing
Preclinical tau efficacy studies
SM07883 reduced tau hyperphosphorylation in the mouse brain

- **Single oral dose** of SM07883 in wild type mice, followed (3 hr) by anesthesia-induced transient tau hyperphosphorylation\(^1\) with brain collection at 4h and western blot for pTau

- SM07883 produced a **dose-dependent inhibition** of pTau

- Significant reduction of pTau after a single dose **as low as 1.25 mg/kg** compared to vehicle

Induced tau hyperphosphorylation

<table>
<thead>
<tr>
<th>SM07883 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma (ng/ml)</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>256</td>
</tr>
<tr>
<td>360</td>
</tr>
<tr>
<td>1283</td>
</tr>
<tr>
<td>Brain (ng/ml)</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>226</td>
</tr>
<tr>
<td>451</td>
</tr>
<tr>
<td>655</td>
</tr>
<tr>
<td>2353</td>
</tr>
</tbody>
</table>

*** p<0.001 compared with vehicle

1. Bretteville et al., *Scientific reports*, 2012
Tau transgenic mouse model for preclinical efficacy

- JNPL3 mice carry a mutated form of human tau from autosomal dominant tau FTD patients

- In this model, tau is primarily present in the brain stem and spinal cord
 - Decreased motor coordination, no cognitive deficit

- The P301L mutation in JNPL3 mice results in tau hyperphosphorylation at sites similar to AD brains (Thr181, Ser202/Thr205 [AT8 epitope], Thr212, Thr231, Ser396)

- JNPL3 mice (10 months old) treated with QD SM07883 for 14 weeks and evaluated for:
 - Tau hyperphosphorylation
 - Formation of tau oligomers, aggregation, and NFTs
 - Neuroinflammation
 - Health and motor deficits

SM07883 reduced tau hyperphosphorylation in JNPL3 mice

- Western blots of brainstem Ser202/Thr205 (Top) and Thr212/Ser214 (Bottom) levels

- SM07883 (3 mg/kg or 10 mg/kg SM07883 QD) reduced tau hyperphosphorylation at the AD pathogenic epitopes compared to vehicle

* p<0.05 compared to vehicle
SM07883 prevented formation of insoluble tau in JNPL3 mice

SM07883 (3 mg/kg or 10 mg/kg SM07883 QD) inhibited insoluble tau formation in the brainstem at the AD pathogenic Ser202/Thr205 (AT8) epitope compared to vehicle (sarkosyl insoluble fraction)

† Only positive values plotted (eight 0 or negative values not shown 3 WT, 2 Veh, 3 SM07883)
* p<0.05, ** p<0.01 compared to vehicle
SM07883 prevented tau aggregation in JNPL3 mice

SM07883 (3 mg/kg or 10 mg/kg SM07883 QD) inhibited tau aggregation in the spinal cord compared to vehicle in a FRET (HTRF) based assay.

HTRF: Homogeneous Time Resolved Fluorescence

* p<0.05, ** p<0.01 compared to vehicle
SM07883 reduced the formation of NFTs in JNPL3 mice

SM07883 (3 mg/kg QD shown) significantly reduced the formation of brainstem NFTs compared to vehicle

* p<0.05 compared to vehicle
SM07883 reduced tau-induced glial activation (neuroinflammation) in JNPL3 mice

SM07883 significantly \textbf{reduced GFAP} (astrocytes) and \textbf{Iba1} (activated microglia) \textbf{expression} compared to vehicle in the brainstems of JNPL3 mice (representative images shown).
SM07883 reduced functional deficits in JNPL3 mice

Motor Coordination (Wire Hang Test Performance)

WT + vehicle

JNPL3 + vehicle

JNPL3 + SM07883

Task Score
(positive = improvement; negative = deterioration)

Combined score based on time in which the mice fall from the wire or reach the platform and grip capacity and agility score\(^1,2\)

* P = 0.011 compared to vehicle

SM07883 improved motor coordination in JNPL3 mice compared to vehicle

2. Garcia, MF. Scholar Commons USF 2003
JNPL3 mice have low body weight with incidence of morbidities and mortality

SM07883 treatment significantly improved body weight and empirically improved morbidity / mortality compared to vehicle

<table>
<thead>
<tr>
<th>Morbidity / Mortality</th>
<th>Vehicle</th>
<th>SM07883</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>2/20</td>
<td>0/19</td>
</tr>
<tr>
<td>Pronounced hunched back</td>
<td>1/18</td>
<td>0/19</td>
</tr>
<tr>
<td>Severe tremors</td>
<td>3/18</td>
<td>0/19</td>
</tr>
<tr>
<td>Moderate tremors</td>
<td>6/18</td>
<td>0/19</td>
</tr>
<tr>
<td>Mild tremors</td>
<td>0/18</td>
<td>2/19</td>
</tr>
</tbody>
</table>
Summary

- SM07883 is a potent DYRK1A inhibitor with a novel selectivity profile that reduced tau hyperphosphorylation in mice
- In tau transgenic mice daily SM07883 compared to vehicle controls reduced:
 - Tau hyperphosphorylation
 - Formation of tau oligomers and aggregation
 - Formation of NFTs
 - Glial activation
- SM07883 demonstrated therapeutic brain and CSF exposures after oral administration in all species tested
 - Potentially amenable for once daily dosing in humans
- IND-enabling studies completed to allow 28 day multiple dose study in humans
 - SM07883 may provide therapeutic, disease modifying effects in AD
 - Phase 1 trial in healthy volunteers is planned
Thank you