Accepted as poster #4059 at the Annual Meeting for the American Society of Hematology, San Diego, California, December 7-10, 2019

SM09419, a Novel, Small-Molecule CDC-like Kinase (CLK) Inhibitor, Demonstrates Strong Inhibition of the Wnt Signaling Pathway and Antitumor Effects in Mantle Cell Lymphoma Models

Heekyung Chung, PhD\(^1\), Emily Creger\(^1\), Lauren Sitts, MS\(^1\), Kevin Chiu\(^1\), Chi-Ching Mak, PhD\(^1\), Sunil KC, PhD\(^1\), Betty Tam, PhD\(^2\), Gail Bucci\(^1\), Josh Stewart\(^1\), Timothy Phalen, PhD\(^1\), Steven Cha, MD\(^1\)

\(^1\)Samumed, LLC, San Diego, CA
\(^2\)Formerly Samumed, LLC

Background: Mantle cell lymphoma (MCL) is a B-cell non-Hodgkin lymphoma (NHL) that accounts for ~7% of all NHL in the U.S. MCL is associated with aberrant activation of the Wnt signaling pathway, which plays a key role in the survival and maintenance of MCL-initiating cells. Many MCL patients experience relapse and subsequent disease progression due to chemoresistance following initial therapy; hence, novel therapies are needed. CLKs regulate the activity of serine/arginine-rich splicing factors (SRSFs) that modulate spliceosome assembly, mRNA splicing, and gene expression. SM09419 is a novel, oral, small-molecule pan-CLK inhibitor that potently inhibits the Wnt pathway. The purpose of these studies was to examine the antitumor activity of SM09419 in preclinical models of MCL.

Methods and Results: SM09419 potently inhibited both CLK1–CLK4 (IC\(_{50}\) for all <0.02 \(\mu\)M) and Wnt signaling pathway (average EC\(_{50}\)=0.068 \(\mu\)M) activities. In REC-1 and GRANTA-519 MCL cells, SM09419 dose-dependently inhibited SRSF6 phosphorylation and potently suppressed expression of Wnt-related genes (CCND1, LEF1, TCF7) and proteins vs. vehicle. In tests on 5 MCL cell lines, cell proliferation was strongly impaired by SM09419 across all lines (average EC\(_{50}\)=0.102 \(\mu\)M [0.021–0.236]). SM09419 also induced apoptosis in REC-1 and GRANTA-519 cells, increasing caspase 3/7 activation and PARP cleavage while reducing survivin and MCL-1 expression vs. vehicle.

In vivo antitumor effects and tolerability of oral SM09419 (QD 20–21 days) were assessed in mice bearing REC-1 and JeKo-1 flank xenografts (n=5/group). In REC-1 xenografts, strong tumor growth inhibition (TGI) vs. vehicle occurred in mice treated with 12.5, 25, and 50 mg/kg SM09419 (TGI 88% [P<0.01], 100%, and 100% [P<0.001], respectively), and the two highest doses induced complete tumor regression in all mice from D14. Similarly, in JeKo-1 xenografts, SM09419 (12.5 and 25 mg/kg) induced significant TGI vs. vehicle (71% and 100%, respectively; P<0.0001) with complete tumor regression at 25 mg/kg, whereas acalabrutinib (50 mg/kg BID) was not efficacious (27% TGI) when tested in parallel. SM09419 25mg/kg induced reversible suppression of phospho-SRSF6 protein and inhibited Wnt pathway-related gene expression (TCF7 and DVL2) in JeKo-1 tumors in a single-dose PD study, demonstrating downstream target engagement *in vivo*. SM09419 was also assessed in 2 patient-derived xenograft (PDX) mouse models of MCL. PDX cells were injected intravenously and treatment was initiated upon 8%–12% engraftment of human CD45+CD19+ cells in peripheral blood. In the first model, derived
from a patient who was progressive after 8 modalities including ibrutinib, SM09419 (25 mg/kg QD) increased survival vs. vehicle (100% through D26 vs. 0% by D12, respectively; n=6/group) and suppressed MCL engraftment in the blood (12% at D26 vs. 69% at D8 and D12, respectively; \(P=0.002 \)) and bone marrow (30% at D26 vs. 91% at D8 and D12, respectively; \(P=0.002 \)). In the second model, derived from a patient refractory after ibrutinib and anti-PDL1 treatment, SM09419 (25 mg/kg QD) significantly suppressed MCL engraftment vs. vehicle in the blood (8% vs. 72%), bone marrow (20% vs. 57%), and spleen (15% vs. 96%) at D28 (study end; \(P<0.001 \) for all; n=4/group). In addition, SM09419 greatly inhibited splenomegaly vs. vehicle (0.04 g vs. 0.4 g, respectively; \(P<0.001 \)). In a subsequent experiment in the same model, mice (n=7/group) were treated with 12.5 or 25 mg/kg SM09419 or vehicle for 12 weeks (to D85). Blood MCL engraftment at D41 was significantly lower in mice treated with SM09419 (40% at 12.5 mg/kg and 23% at 25 mg/kg) vs. vehicle (88%; \(P<0.01 \) and \(P<0.001 \), respectively). SM09419 dose-dependently increased survival (28.6% at 12.5 mg/kg and 85.7% at 25 mg/kg at D85) vs. vehicle (0% at D63); survival was maintained in both dose groups during post-treatment monitoring (to D99). SM09419 was well tolerated in all tested mouse models based on body weight measurements.

Conclusion: In summary, SM09419 potently inhibited SRSF6 phosphorylation, Wnt signaling pathway activity, and cell proliferation and induced apoptosis in MCL cell lines. The strong *in vivo* antitumor effects observed as a single agent suggest that SM09419 may provide a clinical benefit for patients with treatment-resistant or refractory MCL. A Phase 1 study assessing safety, tolerability, and pharmacokinetics of SM09419 in subjects with advanced hematologic malignancies is being initiated.