Modulation of the Wnt Pathway through Inhibition of CLK2 and DYRK1A by SM04690, a Novel Potential Disease-Modifying Treatment for Knee Osteoarthritis

Vishal Deshmukh1, Alyssa Lauren O'Green1, Carine Bossard1, Tim Seo1, Lisa Lemanan1, Maureen Ibarz1, Abdullah Ghasi1, Carolyn Lai1, Long Do1, Shawn Cho1, Joseph Cahill1, Kevin Chiu1, Melinda Pedradua1, Scott Anderson1, Rodney Harris1, Luis Dellamary1, Sunil KC1, Charlien Barogla1, Benoit Melot1, Betty Tan1, Sarah Kennedy1, Jayni Tambiah1, Johan Hoole1, Yusuf Yacou1

1Samumed, LLC, San Diego, CA. Formerly Samumed, LLC, San Diego, CA

Poster P226

Background

- In synovial joints, upregulated Wnt signaling affects osteoarthritis (OA) pathogenesis by increasing inflammation, subchondral bone formation, and thinning cartilage
- SM04690, a novel small molecule, was previously shown to exhibit OA disease-modifying properties through Wnt pathway inhibition in vitro and in vivo
- The novel mechanism of action of SM04690 leading to Wnt pathway inhibition, chondrogenesis differentiation, and anti-inflammatory activity is described

Methods

- **In vitro** Wnt pathway inhibition was assessed by luciferase reporter assay in SW480 colon cancer cells
- A kinase screen (318 kinases) was performed
- **In vitro** SM04690 effects on protein phosphorylation of serine and arginine rich splicing factor (SRSF) proteins, FoxO1, and Src11 in hMSCs, chondrocytes, and synovial fibroblasts were measured by Western blot
- **In vitro** SM04690 and siRNA knockdown effects on (1) Wnt pathway and chondrogenic gene expression in hMSCs were measured using nCounter® gene expression panels (NanoString Technologies) and (2) LPS-induced inflammatory cytokines (IL-6, IL-8, TNF-α) in BEAS-2B cells were measured by qPCR and ELISA
- **In vivo** SM04690 effects were confirmed in rat knee OA models: (1) surgical: anterior cruciate ligament transection with partial medial meniscectomy (ACLt-pMMX) and (2) inflammatory: monosodium iodoacetate (MIA) injection-induced knee OA model (data not shown)
- Statistical analyses: One-way ANOVA (multiple groups); t-tests (two groups)

Results

SM04690: A potent inhibitor of the Wnt pathway, CLK2 and DYRK1A in vitro

- Luciferase reporter assay identified SM04690 as an inhibitor of Wnt signaling (IC_{50} = 11 nM)
- Kinome screen identified cdc-like kinases (CLK2, IC_{50} = 5.8 nM) and dual-specificity tyrosine kinase (DYRK1A, IC_{50} = 26.9 nM) as molecular targets of SM04690

Figure 1. SM04690 inhibited SRSF proteins, Src11, and FoxO1 phosphorylation

Figure 2. Inhibition of CLK2 and DYRK1A reduced Wnt pathway gene expression

Figure 3. Inhibition of both DYRK1A/CLK2 induced chondrocyte differentiation

Figure 4. SM04690 reduced inflammation via inhibition of CLK2 and DYRK1A

Conclusions

In vitro and in vivo

- SM04690 inhibited intra-nuclear kinases CLK2 and DYRK1A, leading to Wnt pathway inhibition
- Inhibition of CLK2 induced early chondrogenic differentiation from hMSCs and inhibition of DYRK1A enhanced chondrocyte function
- Inhibition of STAT3 phosphorylation and NF-κB expression by SM04690 provided potent anti-inflammatory effects
- Through dual inhibition of CLK2 and DYRK1A, SM04690 protected cartilage, induced chondrogenesis, and reduced inflammation, supporting its potential for modifying disease and improving signs and symptoms in knee OA