Modulation of the Wnt Pathway through Inhibition of CLK2 and DYRK1A by SM04690, a Novel Potential Disease-Modifying Treatment for Knee Osteoarthritis

Vishal Deshmukh1, Alyssa Lauren O’Green1, Carine Bossard1, Maureen Ibanez1, Tim Seo1, Lisa Lamangan1, Charlene Barroga1, Jeyanesh Tambiah1, Sarah Kennedy1, John Hood2, Yusuf Yazici1

1Samumed, LLC, San Diego, CA
2Formerly Samumed, LLC, San Diego, CA

Objectives: Wnt pathway upregulation contributes to osteoarthritis (OA) through differentiation of stem cells into osteoblasts, increased catabolic enzymes, and inflammation. SM04690, a novel small-molecule Wnt pathway inhibitor, previously demonstrated chondrogenesis and cartilage protection. SM04690 was evaluated in preclinical studies to determine its mechanism of action for Wnt pathway inhibition, chondrogenesis, and anti-inflammatory effects.

Design: Kinase activity was measured using Z-lyte and Lantha assays. Protein phosphorylation in human mesenchymal stem cells (hMSCs), chondrocytes, and synovial fibroblasts was measured by Western blot. Expression of Wnt pathway and chondrogenic genes and LPS-induced inflammatory cytokines were measured in siRNA knockdowns in hMSCs and BEAS-2B cells by qPCR. In vivo, effects of SM04690 on inflammation, pain, and function were evaluated in rat OA models, followed by single intra-articular (IA) injection of SM04690 or vehicle.

Results: SM04690 primarily inhibited intranuclear kinases cdc-like kinase 2 (CLK2, EC50: 5.8 nM) and dual-specificity tyrosine kinase (DYRK1A, EC50: 26.9 nM). SM04690 inhibited CLK2-mediated phosphorylation of alternative splicing regulators, serine and arginine rich (SR) proteins, and DYRK1-mediated phosphorylation of Sirt1 and FoxO1. siRNA knockdowns identified roles for 1) CLK2 and DYRK1A in Wnt pathway modulation with no effects on β-catenin and 2) CLK2 inhibition in early chondrogenesis with DYRK1A inhibition playing a role in enhancing late chondrocyte function. NFkB and STAT3 inhibition by SM04690 resulted in reduced inflammatory cytokines compared to controls. DYRK1A knockdown was sufficient, while combined DYRK1A/CLK2 knockdown enhanced DYRK1A knockdown anti-inflammatory effects. In vivo models showed that SM04690 inhibited inflammatory cytokine production and expression of cartilage degradative enzymes, resulting in increased joint cartilage, decreased pain, and improved function.

Conclusions: Inhibition of CLK2 and DYRK1A by SM04690 demonstrated a novel dual mechanism for inhibiting the Wnt pathway and enhancing chondrogenesis, chondrocyte function, and anti-inflammation in rat models of knee OA. SM04690 shows potential as an agent which may improve structure, symptoms, and function of OA.