Lorecivivint (SM04690), a Potential Disease-Modifying Osteoarthritis Drug, Inhibits CLK2 and DYRK1A, Novel Molecular Regulators of Wnt Signaling, Chondrogenesis, and Inflammation

Vishal Deshmukh, Alyssa Lauren O’Green, Carine Bossard, Tim Seo, Lisa Lamangan, Maureen Ibanez, Abdullah Ghias, Carolyn Lai, Long Do, Shawn Cho, Joseph Cahiwat, Kevin Chiu, Melinda Pedraza, Yusuf Yazici

Background

- Upregulated Wnt signaling affects osteoarthritis (OA) pathogenesis by increasing inflammation, subchondral bone formation, and thinning cartilage
- Lorecivivint (LOR), a novel small molecule, has demonstrated OA disease-modifying properties through Wnt pathway inhibition *in vitro* and *in vivo*.
- The mechanism of action of LOR leading to Wnt pathway inhibition, chondrocyte differentiation, and anti-inflammatory activity is described

Methods

In vitro

- Wnt pathway inhibition was assessed by luciferase reporter assay in SW480 colon cancer cells
- A kinome screen (318 kinases) was performed
- LOR effects on phosphorylation of proteins in human mesenchymal stem cells (hMSCs), chondrocytes, 293T cells, and synovial fibroblasts were measured by Western blot
- LOR effects on splicing were measured in hMSCs by RNA sequencing and PCR
- LOR and siRNA knockdown effects on hMSC Wnt pathway and chondrogenic gene expression were measured using nCounter® panels and qPCR

In vivo

- LOR effects were confirmed in rat knee OA models: (1) *surgical*; anterior cruciate ligament transection with partial medial meniscectomy (ACLT+pMMX) and (2) inflammatory: monosodium iodoacetate injection-induced knee OA model (data not shown)

Statistical analyses: One-way ANOVA (multiple groups) and t-tests (two groups)

Results

LOR: A potent inhibitor of the Wnt pathway, CLK2, and DYRK1A in vitro

- Luciferase reporter assay identified LOR as an inhibitor of Wnt signaling (IC_{50} = 11 nM). A kinome screen identified CDC-like kinases (CLK2, IC_{50} = 5.8 nM) and dual-specificity tyrosine kinase (DYRK1A, IC_{50} = 26.9 nM) as molecular targets of LOR

Figure 1. LOR treatment of hMSCs and chondrocytes resulted in decreased phosphorylation of SRSF4, Sirt1, and FoxO1 compared to DMSO

Figure 2. LOR modulated alternative splicing *in vitro*

Figure 3. LOR modulated the Wnt pathway independently of β-catenin

Figure 4. Inhibition of CLK2 and DYRK1A reduced Wnt pathway gene expression

Figure 5. Inhibition of CLK2/DYRK1A induced chondrocyte differentiation

Figure 6. LOR reduced inflammation via inhibition of CLK2 and DYRK1A

Conclusions

In vitro and in vivo

- LOR inhibited intranuclear kinases CLK2 & DYRK1A, leading to Wnt pathway inhibition
- Inhibition of CLK2 induced early chondrocyte differentiation from hMSCs and inhibition of DYRK1A enhanced chondrocyte function
- Inhibition of STAT3 phosphorylation and NF-κB expression by LOR provided potent anti-inflammatory effects
- Through dual inhibition of CLK2 and DYRK1A, LOR protected cartilage, induced chondrogenesis, and reduced inflammation, supporting its potential for modifying disease and improving signs and symptoms in knee OA

Statistical analyses: One-way ANOVA (multiple groups) and t-tests (two groups)